Occasional Erratics

Newsletter of the

MEDWAY FOSSIL AND MINERAL SOCIETY

www.mfms.org.uk

No. 16. July 2021

I am obliged to add the following, to all those members of the Medway Fossil and Mineral Society, who receive this communication by direct email or by post, under the provision of the General Data Protection Regulation (2018)

If you no longer wish to hear from the Medway Fossil and Mineral Society, please contact medwayfossilandmineralsociety@gmail.com, confirming your name and address, and stating that you wish to unsubscribe from the Medway Fossil and Mineral Society's communications.

The editor of this edition of the MFMS Newsletter was Nick Baker

Cover picture Flittermouse Hole. On the downs, north of Birling, Kent. This section is typical of the base of the Upper Chalk. *Note, the location is part of land owned by Birling Estates.*

Any views expressed in this Newsletter are the views of the Editor and the named author of any articles published and are not necessarily the views of the Committee. Articles are accepted for publication on the understanding that they do not infringe past or present copyright laws and any information given by a writer is not always checked for accuracy. Unless otherwise stated, reproduction of articles is allowed, providing source and author are acknowledged.

Index to editions 01-15

A long walk with Alice	Nick Baker	11	2018 Dec
American Parks (1-2)	Gary Woodall	12	2019 July
American Parks Part 3: Badlands	Gary Woodall	13	2019 Dec
American Parks Part 4: Wind Cave	Gary Woodall	14	2020 July
American Parks Part 5. Pikes Peak	Gary Woodall	15	2020 Dec
Ancient Cups—A cold field-trip to a small fossil	Nick Baker	15	2020 Dec
Ashdown-Wadhurst Junction at Pett	Dave Talbot	02	2020 Dee 2014 July
Aylesford—10 years on (a look at)	Nick Baker	02	2014 July 2017 July
	Nick Baker	08	
Barbados Earth—Deep sea, high and dry			2017 July
Beijing Museums. The	Gary Woodall	01	2013 Dec
Benjamin Harrison and the search for ancient Kentish Man	Nick Baker	03	2014 Dec
Betteshanger Country Park—Field trip to	Nick Baker	12	2019 July
Black Gold or Fossil Fool_The state of play	Anne Padfield	06	2016 July
Brightling Mine. visit to	Dave Talbot	04	2015 July
Bryozoa _Focus on	Nick Baker	06	2016 July
Can evolution work in reverse?	Nick Baker	04	2015 July
Canyonlands NP, visit to, 5th June 2011	Dave Talbot	03	2014 Dec
Captain Scott, Glossopteris, and the Beacon Sandstone	Nick Baker	02	2014 July
Chalk 'Bryozoa Reef'- the search for a	Nick Baker	12	2019 July
Chalk of the Thanet Coast. The	Nick Baker	05	2015 Dec
Chalk (The case of the Missing Chalk—Making sense of the Cl		00	2015 D00
Chark (The case of the Wissing Chark Wiaking sense of the Ch	Nick Baker	15	2020 Dec
Christmas The Geology of	Anne Padfield	03	2020 Dec 2014 Dec
Christmas, The Geology of			
Cinnabar and others	Nick Baker	03	2014 Dec
Cliff End (Field trip to)	Nick Baker	07	2016 Dec
Dinosaures - a theme park in France	Fred Clouter	08	2017 July
Dinosaurs on coins	Gary Woodall	14	2020 July
Columnar Basalt	Gary Woodall	13	2019 Dec
Echinodermata	Fred Clouter (Supplied by)	04	2015 July
Eclipse Experience, An	Ann Barrett	10	2018 July
Etches Museum, The	Gary Woodall	09	2017 Dec
Evolution, Some thoughts on	Tony Mitchell	09	2017 Dec
Exploits in a Chalk Pit	Anne Padfield	01	2013 Dec
Exploits in Snowdonia	Anne Padfield	02	2014 July
Flints, Silica and rotting sponges	Nick Baker	11	2018 Dec
Florida Fossils	Gary Woodall	03	2016 Dec 2014 Dec
Folkestone field trip	Trevor Wright	13	2014 Dec 2019 Dec
Fossil Collecting Jive and Terminology	Fred Clouter (Mick Cuddiford)		2019 Dec
Fossil Show at Rochester Guild Hall Museum	Nick Baker	04	2015 July
Fossil Show at Rochester Guild Hall Museum	Nick Baker	06	2016 July
Fossil Show at Rochester Guild Hall Museum	Nick Baker	10	2018 July
Fossil show at Rochester Guild Hall Museum	Nick Baker	12	2019 July
Fossil Show at Maidstone Museum	Nick Baker	10	2018 July
Fossil and Mineral Road Show	Nick Baker	08	2017 July
Fossil weather	Gary Woodall	08	2017 July
Geological Walks	Nick Baker	03	2014 Dec
Geology by Zoom—July 8th 2020	James Downer	14	2020 July
Geology by Zoom—July 15th 2020	Nick Baker	14	2020 July
Geology Foray to Folkestone. A	Paul Wright	01	2013 Dec
G.A. Festival of Geology.	David Rayner	01	2013 Dec
G.A. Festival of Geology.	Nick Baker	07	2015 Dec 2016 Dec
	Paul Wright	07	2010 Dec 2014 July
Hermitage Quarry			•
Karst your eyes over this	John Taylor	05	2015 Dec
Knockmill Enigma. The	Nick Baker	04	2015 July
Lenham Beds. The—possible mode of formation	Nick Baker	01	2013 Dec
London Clay—A solitary close look	Nick Baker	12	2019 July
Lower Chalk Ammonites	Nick Baker	15	2020 Dec
Lower Culand, Focus on	Nick Baker	10	2018 July
	3		-

Index to editions 01-15 cont...

Lyme to Branscombe ItineraryA	Nick Baker	14	2020 July
Marl seams in the Chalk—a question of origins	Nick Baker	03	2014 Dec
Micropalaeontology. Methods in	Nick Baker	04	2015 July
Minerals. An interest in	John Taylor	03	2014 Dec
MLMS / MFMS 40th anniversary party	Ann Barrett / Dave Talbot	05	2015 Dec
MFMS at the Kent Show Ground—July 5-7 2019	Nick Baker	12	2019 July
Mineral Gallery—Iron	Nick Baker	15	2020 Dec
More art then science—geology as a life-long journey.	Nick Baker	06	2016 July
Muck above the Chalk (feedback from)	Nick Baker	07	2016 Dec
North Western USA Fossil Sights #1	Gary Woodall	05	2015 Dec
North Western USA Fossil Sights #2	Gary Woodall	06	2016 July
North Western USA Fossil Sights #3	Gary Woodall.	07	2016 Dec
Old Chalk Pits I Have Known	Nick Baker	09	2010 Dec 2017 Dec
Obituary. Ian Burden	Nick Baker	06	2017 Dec 2016 July
	Ken Burr	10	
Obituary. Carol Burr		03	2018 July
Obituary. Jim Greenwood	Nick Baker		2014 Dec
Obituary_Joyce and Harry Day	Nick Baker/Anne Padfield	04	2015 July
Obituary. William v Marshall. 'Bill'	Nick Baker	02	2014 July
Obituary. Dr Raymond Casey FRS	Nick Baker	06	2016 July
On photographing fossils—photo report	Nick Baker	04	2015 July
One that got away. The	Tony Mitchell	03	2014 Dec
Ostracods. Focus on	Nick Baker	05	2015 Dec
Paracus National Park, Peru	Gary Woodall	11	2018 Dec
Peters Pit, Wouldham. Trip to May 12th 2013	Nick Baker	01	2013 Dec
Porosphaera, Flint cores and Flint formation	Nick Baker	08	2017 July
Portraits of Canyon Lands	Dave Talbot	13	2019 Dec
Ptychodus polygyrus a cretaceous shark	Ron Stillwell	05	2015 Dec
Pyrite, The Trouble with	Fred Clouter	02	2014 July
Purbeck Dinosaur tracks	Gary Woodall	09	2017 Dec
Radiolaria Focus on	Nick Baker	07	2016 Dec
Roman Mudhorse SpeculationA	James Downer	14	2020 July
Seven go-a bashing—Report from the Hermitage quarry trip	Paul Wright	05	2015 Dec
Sheppey. A new find on	Tony Mitchell	01	2013 Dec
Some Lower Tertiary outliers of North West Kent	Nick Baker	12	2019 July
Table Mountain	Gary Woodall	10	2018 July
The Muck above the Chalk—a proposed talk	Nick Baker	06	2016 July
Tunbridge Wells, Rusthall Common ? Stonewall Park, visit to	Dave Talbot	06	2016 July
Walk along the Medway Valley - Burham Area a	Anne Padfield / Dave Talbot	13	2010 July 2019 Dec
WAM Research	Tony Mitchell	09	2017 Dec
Was it all worth it?	David Rayner	04	2017 Dec 2015 July
	Nick Baker		
Were any geological epochs ice-free?		06	2016 July
White Sands of Seal Chart. The	Nick Baker	05	2015 Dec
Worms Come to Torms with	Nick Baker	09	2017 Dec
Content of Additional Letters (2020-21)			
Amber	Gary Woodall	03	2020 Sep
Belgian Marble That slab of	Nick Baker	04	2020 Nov
	N' 1 D 1	0.1	

Alloci	Gary woodan	05	2020 SCP
Belgian Marble That slab of	Nick Baker	04	2020 Nov
Chalk—The Cenomanian-Turonian junction of the -	Nick Baker	01	2020 Mar
Copt Point Enigma—The	Nick Baker	03	2020 Sep
Dinosaur Statues 2 : Iguanodon	Gary Woodall	04	2020 Nov
Dinosaur statues 2 : Brontosaurs	Gary Woodall	05	2021 Feb
Echinocorys scutata question. A possible solution to the	Nick Baker	02	2020 May
Finding a skull	Nick Baker	04	2020 Nov
Finding a rare? tooth	Nick Baker	04	2020 Nov
Flint scraper	Nick Baker	05	2021 Feb
Fossil fish in flint.	Gary Woodall	01	2020 Mar
Fossils in Heraldry	Gary Woodall	02	2020 May

Gamma Selenite			Nick Baker	04	2020	Nov	
Genes and Evolution			Tony Mitchell	05	2021	Feb	
Geological Resources and the Condu	ct of the War.		Nick Baker	03	2020	Sep	
Geology, the sum of the parts			Nick Baker	05	2021	1	
Glauconitic Marl			Nick Baker	05	2021		
Hamlet and the Skomer Volcanics			Nick Baker	02	2021		
Mineral Gallery_Quartz			Nick Baker	03	2020		
Obituary_Don Searl			Nick Baker	04	2020		
Planetary Models			Gary Woodall	05	2021		
Reculver			Nick Baker	01	2020	Mar	
Size matters			Tony Mitchell	05	2021	Feb	
Swanscombe Coalbrookdale of the C	Cement Industry		Nick Baker	02	2020	Mav	
That Irish builders marble.	,		Nick Baker	05	2021	2	
Trevor Wright's E-Type Echinoid			Nick Baker	01	2020		
rievor wright s L-rype Lennold			IVIER Daker	01	2020	Iviai	
Contents of Occasional Erratics	No. 16						
Editor's notes	Nick Baker	05	Some Lower Tertiary outlie	rs in N	Jorth W	Jest K	ent
Editor 5 notes	THER DURCH	05	2—Farningham Wood.		Baker		11
7		05	e				
Zoom meetings		05	Sub-dividing The Chalk		Baker		13
US Parks –6 : Everglades.	Gary Woodall	06	Loose Ends	Nick	t Baker		21
Chalcedony formation in the Folk	estone						
Sands, around Ightham Common.		08					
Sunas, arouna ignitiani Common.	THER DURCH	00					

Editor's notes.

At the time of writing, we have plans for our indoor meetings to recommence around the middle of September. That was the suggestion at a zoom meeting a few weeks back. There is now a question around rising infection and just days from responsibility being put entirely in our hands. And that responsibility affects not just ourselves but also the safety and wellbeing of our friends and relations. There will always be a risk in living with SarsCov-2, but we are now being directed to live as if the risk was suddenly minute. And I, even fully vaccinated, stills runs a high risk whatever precaution I take. It may be that rates of infection will have died down by September. We are told that we may have to live with some rate of infection. That creates a considerable dilemma for a lot of us. I have added a 'late news' at the end of this letter

This year our zoom meetings have been as follows

Jan	6	Benjamin Harrison and Eoliths	Nick Baker	Apr	7	?	
Jan	13	Brazil	Ann Barrett	Apr	14	Caves	All
Jan	20	Brazil	Ann Barrett	Apr	21	Lithium and Lithium Mining	Anne Padfield
Jan	27	Rock cutting and thin-sectioning	Brian Lines	Apr	28	?	
		Brian had some technical problems		May	5	Production of rock-thin sections	Brian Lines
Feb	3	Rock cutting and thin-sectioning	Brian Lines	May	12	Cephalopods	All
Feb	10	The Malverns	Brian Lines	May	19	Fold structures	Anne Padfield
Feb	17	Trilobites	All	May	26	The Ordovician Age	Tony Mitchell
Feb	24	Geomorphology I	Tony Mitchell	Jun	2	USA Dinosaur Parks	Gary Woodall
Mar	3	Geomorphology II	Tony Mitchell	Jun	9	Diamonds and Diatremes	Anne Padfield
Mar	10	Botswana I	Tony Mitchell	Jun	16	Sub-dividing the Chalk	Nick Baker
Mar	17	Botswana II	Tony Mitchell	Jun	23	Fossil Fish	All
Mar	24	Program Planning	All	Jun	30	Plants	Tony Mitchell
Mar	31	?		Jul	7	Volcanos	Ann Barrett

In this edition of the newsletter, Gary is talking on The Everglades, and I am talking about Chalcedony and Chalk. Was not sure whether to add the latter, but not everybody saw the zoom talk and I did rush it—so here you have a static record. Sorry, print may be small in parts but there was a lot to put in. Anyway, over to Florida, with Gary.

American Parks Part 6: The Everglades

by Gary Woodall

The previous articles in this series have highlighted some of the lesser know parks in the northwest USA, we now move around 2000 miles east to the lower part of Florida where the Everglades National park can be found. The Everglades National Park and the contiguous Big Cypress National Preserve together are around 2000 square miles. They were created to protect the 'swamplands' of southern Florida in 1947. The term swamp is actually incorrect as the whole Everglades system is a gigantic river. Water from further north in Florida gradually flows south to exit in the Gulf of Mexico. The river itself is many miles wide, very shallow and covered in vegetation, hence its' nickname 'The River of Grass'.

View of Everglades from the observation tower.

By far the bulk of the everglades comprises this grassy wetland but within this are hundreds, perhaps thousands of higher 'islands' where trees, such as mahogany, can grow. The US National Park Service (NPS) has built a few access roads into the wetlands to permit visitors to experience the park and has constructed observation towers. Most of the Everglades is however completely inaccessible other than by airboat, which are banned from the park itself but can be operated in unprotected areas bordering the park. I had always wanted to ride on an airboat ever since watching the TV series 'Gentle Ben' with Dennis Weaver (AKA McCloud) as a child and more recently CSI Miami, so and I went on a ride from Everglades City.

Cypress swamp

Airboat in Mangroves

Apart from the grasslands there are two other major eco-systems, the Cypress Swamp and the Mangrove Forest. The Cypress Swamp, this time a true 'swampland' is, as the name implies, primarily in the Big Cypress National Preserve north of the Everglades. Here can be seen huge Cypress trees which have evolved to quite happily live in water. The NPS has constructed boardwalks out into the swamp to enable visitors to get amongst the trees. This is convenient as I certainly wouldn't want to walk on the ground given that there are alligators and poisonous snakes. The mangrove forests are to be found where the Everglades meet the sea and again these plants are perfectly adapted to this environment.

There is abundant wildlife in the Everglades, the most famous resident being the American Alligator which can be found throughout the park. They are found throughout Florida and virtually every body of fresh water will be home to one. They mainly eat birds, fish and small mammals which they lie in wait for then lunge at to catch, surprisingly fast. A friend of mine is a keen golfer and once when playing in Florida his ball landed beside a water hazard, he went down a small track to play it but a warden arrived shouting to get the hell out of there. When he asked why the warden said that an alligator lives in the hole! Despite this alligators are quite docile and rarely attack. In contrast American Crocodiles are much more aggressive. They can also be found in the Everglades mainly in areas of salt or brackish water. The Everglades are the only place in the world where both alligators and crocodiles can both be found. The main difference between them are that the alligators have a broad snout, crocodiles more V shaped and when their mouths are shut crocodiles teeth stick out and the lower fourth tooth sticks up above the upper lip.

Alligator.

Crocodile.

Roseate Spoonbill

Anhinga

There are many other reptiles such a turtles, tortoises, lizards and of course snakes. I saw the first three but luckily didn't see any snakes! As you would expect there is abundant birdlife to be seen, including herons, storks, ibis, the very attractive roseate spoonbill and the prehistoric looking anhinga.

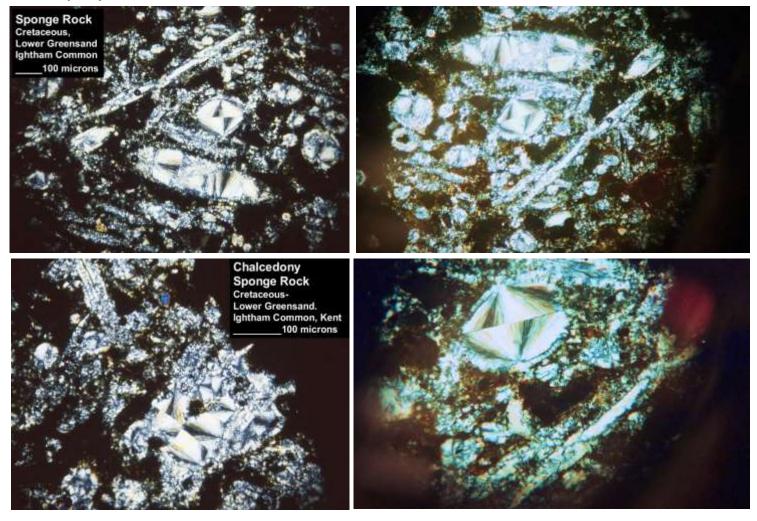
Large mammals are nowadays quite rare but there are still a few Florida Panthers living there and also some Black Bears, the chance of seeing one is almost nil. Smaller mammals such as deer and racoons are much more common and there is a reasonable possibility of seeing these. I was lucky enough to see a racoon from the airboat.

In coastal areas Manatees, commonly called Sea Cows, can be seen these huge mammals have few natural enemies but are endangered due to habitat loss and unfortunate encounters with boats. I didn't see any in the Everglades itself but I was lucky enough to see them in a river a few miles north of the park. Beside this river there is a power station which discharges (clean) warm water which the manatees like to swim in. It was quite sad to see that a lot of them showed the scars of encounters with motorboats.

Manatee.

When I worked for ITW-GSE their main US factory was at Tampa in Florida so every year I got to go out there for various meetings. I would always take the opportunity to stay a few days extra and see the sights of Florida of which there are many. I went to several State Parks, Cape Kennedy Space Centre and St Augustine (the oldest city in the USA). But I am proud to say that although I drove past Disney World several times I never had the inclination to visit it!

On one trip to the Everglades I did drive all the way down to Key-West, a 300 mile round trip for the day. I stopped off at a couple of sights, notably Windley Key Fossil Reef State Park. Here all the rock is a coral reef laid down in the Pleistocene. The other notable sight was the original African Queen boat from the film, somehow it ended up in the Florida Keys.


Anyway I could write quite a bit about Florida but that would depart from the theme of US National Parks. So that's it until the next edition and the next park.

My thanks again to Gary. I calculate that (so far) Gary's contributions would comprise a whole newsletter—if not two! The subject has reminded me of something connecting. Among my mother's reading material was a book entitled—*A Girl of The Limberlost*, by a writer named Gene Stratton-Porter (c1912). Apparently, The Limberlost was/is a swamp area in Indiana. Subsequently it was largely destroyed by oil prospecting, but recently there have been moderately successful attempts to reinstate it, at least in part. And the story? Widowed mother hates daughter—because daughter was born on the day father was drowned in the swamp. Were it not for the daughter, mother could have been there to save him! Daughter raises money by selling butterflies (found in The Limberlost) in order to get to college, where it's a case of boy meets girl and they live happily ever after! Nick

Chalcedony formation in the Folkestone Sands, Ightham Common, Kent

Nick Baker

That part of Ightham Common, known as Oldbury Camp, has long fascinated me. For a start, it is said to be the site of a fortified Stone Age settlement, and yet the geology appears undisturbed. It was a winter afternoon—January 21st 1961, that I cycled out from Bromley, and found my first fossil—a cast of a *Pecten* bivalve, in the local sandstone. But one can always fall into the trap (as a beginner) of so intently looking for fossils, that you don't see the rocks for the fossils. So it was over 20 years later in January 1983 that I picked up a piece of the local rock. It was curious because of its (apparently) low density. Further inspection showed that it was composed of masses of long, thin crystals, less than a millimetre in width but up to 10mm in length. The low density was due to the air between the crystals. It was not uncommon, quite a number of small boulders were lying around. But what was it? No one seemed to know—certainly not the (London) crew at the OUGS. Opinions ranged from some form of slag (from local iron smelting) to peri-glacial transport (?) The Sevenoaks memoir of the British Geological Survey mentions 'Spiculiferous sandstone' in the area in question. A this time (1986-90) I was producing rock thin-sections, mostly igneous and metamorphic, but occasionally sedimentary. I turned my attention to the mystery rock. Below are some of the results.

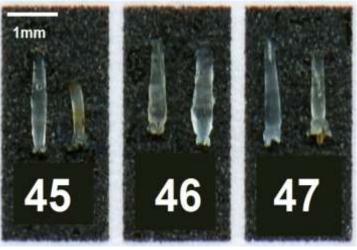
The slides show several cross-sections of the crystals, which appear to be tubes—the outer lining surrounding an infilling with chalcedony. The view is through cross polars. The tubes appear to be about 100-200 microns in diameter.

I loaned one of the slides and a sample of the rock to Richard Taylor (the rock and mineral dealer) who then referred it to a friend. The answer came back as follows.

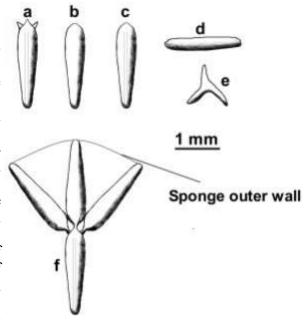
"The specimen consists of sponge spicules replaced by chalcedony. In some parts there are masses of Chalcedonised spicules, and in other parts the matrix itself is chalcedonised, leaving casts replacing the spicules. The latter appear as holes in the matrix, while the former are massed together in mats". The Folkestone Beds do not often favour fossil preservation (but some of the sponge material may well have been silicerous) - often the sediments are coarse, allowing for percolating water to dissolve any calcareous material. It seems most likely that the chalcedony is a post-depositional *infilling*. Chalcedony tends to do that rather than *replace*.

To the right is a close-up of a cross-section of one of the spicules. Below is a detail of the surface of the parent rock, showing the masses of spicules.

Now, fast-forward 20 years or so. On July 1st, 2011 I was walking along Seal Chart. There had been heavy thunderstorms three days before and the silt on the path had been


washed into 'delta-fans' of white silt. I thought of collecting a sample and I noticed that there appeared to be elongate crystals in the silt. Later I found that I had collected another sample of sponge spicules—this time loose.

The field width in the two pictures above is about 2mm. Note that the specimen above-right appears to be splayedout at the top. This is a common occurrence and is best shown in the picture of the mounted specimens on the right. It demonstrates the break at the junction with another spicule.

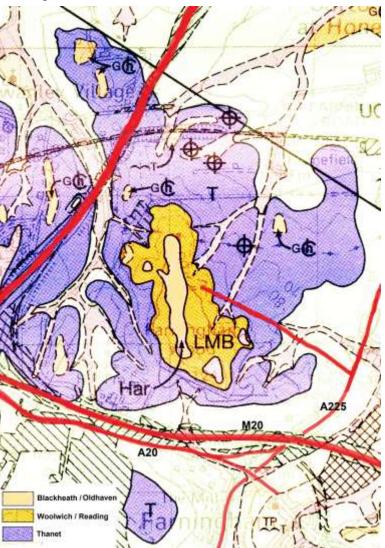

In another article in *Occasional Erratics* (number 6) December 2015 (*The White Sands of Seal Chart*) I demonstrated the relationship of the spicules in relationship to a complete sponge. (See following page)

Much of the material was eroded to simple elongate crystals (d), with occasional other 'sponge' material, as in (e). There was also a large amount in the form of (b) and (c), with occasional (a) where the ends had, what appeared to be, broken off 'joint segments'. There was a straight tubule apparent through many of the fragments, which appeared to branch into the small end joint segments. The material was of silica, but at the time, I was uncertain as to whether normal quartz or chalcedony.

My subsequent investigation gave the indication that the juxtaposition of the different morphology of the material indicated that they were sponge spicules from Tetraxonid sponges.

The figure (f) gives the complete structure of (a-c). The drawing shows the structure in a flat plain, but in reality you need to think of this as an inverted tripod, with the three 'supports' being attached to the outer wall of the sponge, with a separation of 120 degrees. The fourth single segment is angled into the centre of the sponge. The tubule running through the spicules is the axial canal. In living sponges this is occupied by organic matter and is the first part of the spicule to be formed, subsequently mineral matter is formed around it.

In the fossil state, and where the axial canal is visible, the outer material is generally of colloidal silica, while the canal is in filled with crypto-crystalline silica and is thus visible, especially under polarised light. But often the canal is invisible due to the whole spicule being replaced with cryptocrystalline silica.

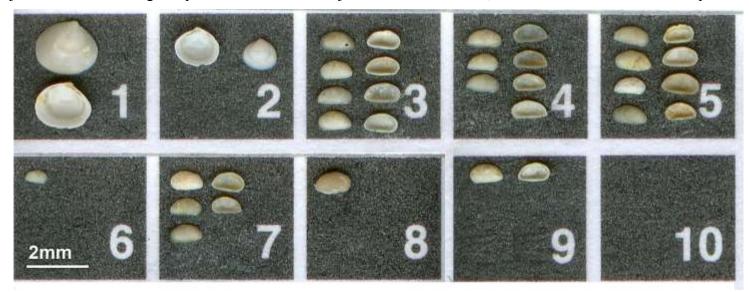

All of this material is derived from the underlying Folkestone Sands, but given that the path was on the highest ground, the source rock must be in that vicinity and there are quarries and road banks in the area.

Some Lower Tertiary outliers in North West Kent 2. Farningham Wood

Nick Baker

I had promised this article earlier, but was delayed by events. Once again I need to explain the limits of this information. The outliers are for the most part on the dip slope of the Chalk. The earliest formation—the Thanet Sand is common as an outlier and I have omitted those instances unless fossil material is involved. I am mostly concerned here where the younger beds, such as the Woolwich and Reading, Blackheath and Oldhaven are involved. Except for Beacon Hill, near Bean, London Clay is a rarity, having been eroded first. Farningham Wood is a nature reserve on the high ground to the north of Farningham village. In addition to Geologists, the site is of considerable interest to Naturalists—having a rich flora of acid-soil species. An attempt was made to try to convert a small area to a 'moorland-style habitat. As far as I know, this did not quite succeed.

How to get there—From the M20, M25 or A20, one needs to approach Junct 3 on the M25. Exit on the A20 eastward. After about half a mile, turn left on to the A225 (road to Dartford). After a further half mile, turn left into Calfstock Lane. After a mile or so his ends with the car park at the edge of the reserve. A footpath then leads you up the ridge to the


centre of the reserve. I must emphasize at this point that most of these locations are nature reserves and their keepers often see geologists as the enemy. I did extract about 500g of clay on my first visit, but this was from a large bulldozed hole produced by the local moto-cross fraternity (to produce a challenging track) at Canada Heights, at the northern end of the wood. The Canada Heights Club use that location (TQ 541687). The hole in this case broke into the Woolwich Shell Bed. The Woolwich Clays also provide a seal in retaining the water,

producing the ponds on the centre of the ridge a little way to the south—a feature otherwise not expected.

About 200m to the south you can view the junct of the Woolwich and Blackheath beds. At this point silt and pebbles overlie brown silt, see photo to right. The Shell Bed is just below the silt but not visible at that point. From the Dartford memoir it is said that the Woolwich Shell Bed follows the 400ft (120m) contour around the ridge something I have not yet tried to do. It is quite a challenge to find any large molluscs among any fragments you find but don't assume it is not worth a search. For me, looking at the micro level, things are more certain. It is a case of small molluscs, ostracods, fish otoliths, and teeth. Below is a selection of what I have found. 1-2 are small bivalves. Don't assume that small bivalves and gastropods are all invaniles. Invanile gastropods will consist of just one

juveniles. Juvenile gastropods will consist of just one 'whorl'. No, these are adults of small species.

3-9 are ostracods—small crustaceans, found in all geological periods. Their variability can be slight, but that small variation may mean another Genus, let alone species.

In the sample I collected I found one otolith—fish ear bone. See photo to the right. Their study is also highly specialised where I have also not yet ventured! The former Chairman of the Kent Geologists' Group—Dr A. J. Rundle, has made a study of these as one of his specialities. Like the ostracods, they are common in most geological periods from the Devonian onwards. In the Tertiary they are especially common in the Blackheath/ Oldhaven, Bracklesham, and Barton Formations. Beware of

pieces of strange-looking debris, especially when you find two or more identical pieces!

Sub-dividing the Chalk Nick Baker

The question is—how to explore finer detail in a rock stratum that, at first sight, seems to be a uniform mass, and defying any further subdivision? However, any careful observation of the Chalk will indicate that it is far from uniform. There is white, apparently uniform chalk, while there is also Chalk with many flint bands, or there is Chalk with rough and nodular bedding. These first observations show that the Chalk is variable in terms of rock type—Litho-stratigraphy. Then there is fossil content. Much harder to see

	Biodivision	Mortimore et al	Rob	inson	Fossil zone	Basal marker bed		
	Maastrictian				Ostrea lunata	Base of Sidestrand Chalk		
		Portsdown			Belemnitella mucronata	Portsdown Marl) Fossil zones not		
	Campianian	Culver			Gonioteuthis quadrata Offaster pilula	Castle Hill Maris) exact to marker bed Friars Bay Marl (Youngest Kent Chalk		
		Newhaven			Marsupites testudinarius	Palm Bay Echinoid Band		
Upper	Santonian			Margate	Uintacrinus socialis			
Chalk			1			Peake's Sponge Bed		
	· · · · · · · · · · · · · · · · · · ·	Seaford		and states and	Micraster coranguinum	Barrois' Sponge Bed		
	1.1	Course areas	Ramsgate	Broadstairs		Pegwell Inoceramid Band East Cliff Marl 2		
	Coniacian				Micraster decipiens			
		4859,2903504			Micraster normanniae	Parlour Hardground		
		Lewes		St. Margarets	Holaster Planus	South Foreland Hardground 1 Bantam Hole Flints		
	1				Terebratulina lata	Crab Bay Marl First Flints		
	Turonian			Akers Steps				
Middle		New Pit	Aycliff Dover Shakespeare	Aycliff		Warren Mari 1		
Chalk					1	Round Down Marl		
		Holywell		Shakespeare	Inoceramus labiatus	Base of Inoceramus labiatus zone		
					Neocardioceras juddi	Base of Melbourne Rock		
	5	Plenus Maris	Plenus Marls	Metoicoceras geslinianum	Base of Plenus Mari			
			Abbots Cliff	Capel-le-Ferne	Calycoceras guerangeri	Top of jukes-brownei zone		
Lower	Cenomanian	Zig Zag Hill	Abbots Clim	Hay Cliff	Acanthoceras jukes-brownei	Base of jukes-brownei zone		
Chalk	a pears and the contract			Fort Weers Day	Acanthoceras rhotomagense	Top of Tenuis Limestone		
			East Wear Bay	East Wear Bay	Mantelliceras mantelli	Top of Glauconitic Marl		
		West Melbury		Glauconitic Marl	Hypoturillites carcitanensis	Base of Glauconitic Marl		

Comparison of Chalk zonal schemes

This Bio- or Palaeo-Stratigraphy is variable at different levels of the Chalk and therefore varying over the history of the Chalk deposition. The first chart (above) shows the different methods used in sub-dividing the Chalk over the last 150 years or so. The first methods were litho-stratigraphic and had a three-fold division— Lower, Middle and Upper. So, the Lower Chalk, was generally grey and without flints, The Middle Chalk, white

Chalk zonal schemes - Mortimore et al (1986)

	Mortimore et al	Basal marker bed	
	Sidestrand Portsdown	Base of Sidestrand Chalk Portsdown Mari	
	Culver	- Castle Hill Marls	
Upper	Newhaven		
Chalk	Seaford	– Peake's Sponge Bed – East Cliff Marl 2	
Lewes Bantam Hole Flints	Bantam Hole Flints		
Middle	New Pit	First Flints Warren Marl 1	
Chalk	Holywell		
Lower	Zig Zag Hill	Base of Melbourne Rock	
Chalk	West Melbury	Top of Tenuis Limestone Base of Glauconitic Marl	

with few or no flints. And the Upper Chalk, white with generally abundant flints. This scheme allowed mapping to be generally easy and was used in most maps and textbooks until the 1980s. However, field memoirs by the British Geological Survey indicate that considerable observation was made of fossil content, continuing and building on the methodology of William Smith in the early 19th Century.

Based on research in the 1970s and early 80s, Professor R. Mortimore and others attempted to finetune the litho-stratigraphic divisions of the Chalk—the original three divisions was converted to nine divisions (not counting the Sidestrand Chalk). The chart to the left shows the basal marker beds. Basically, the soft chalks were separated by hard nodular divisions in the lower levels. At higher levels consideration was given to the predominance of flint bands and marl seams.

Chalk zonal schemes - Robinson (1986)

	Rob	inson	Basal marker bed	
Upper Chalk	Ramsgate	Margate Broadstairs St. Margarets	– Friars Bay Marl (Youngest Kent Chalk) – Barrois' Sponge Bed – East Cliff Marl 2 Bantam Hole Flints	
Middle	Dover	Akers Steps Aycliff	– Crab Bay Marl – First Flints	
Middle Chalk		Shakespeare	– Warren Marl 1	
	Plenus Marls	Plenus Marls	Base of Melbourne Rock Base of <i>Plenus</i> Marl	
	Abbots Cliff	Capel-le-Ferne	- Top of jukes-brownei zone	
Lower	ADDOLS CIIII	Hay Cliff	- Base of jukes-brownei zone	
Chalk	East Wear Bay	East Wear Bay	- Top of Glauconitic Marl	
		Glauconitic Marl	Base of Glauconitic Marl	

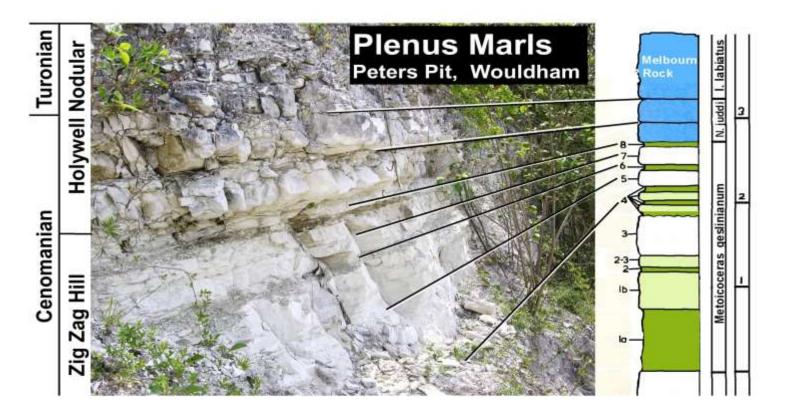
The scheme of Mortimore and Co used sections in Hampshire and Sussex, these being considered to be the more complete than those in Kent. In Kent, Dr N. Robinson surveyed the North Downs Chalk. His scheme is shown above. Both the Robinson and Mortimore schemes surveyed the same Chalk features but gave them differing names, with often no cross-referencing. Robinson set out to employ the well-established names, like those applied by Rowe and Jukes-Brown.

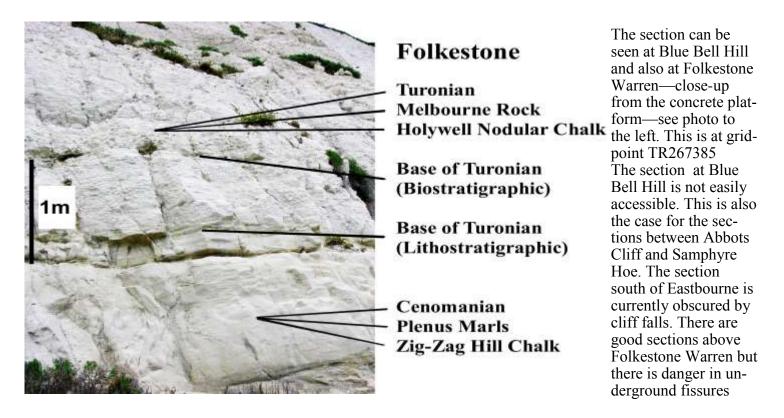
The scheme championed by Mortimore *et al* was that adopted by the British Geological Survey, which finetuned the mapping schemes on a litho-stratigraphic basis. However, palaeontological research required some reference to fossil content. Given that most sedimentary rock strata in the British Isles ultimately have a zone with a contained named fossil, it would not be useful for the Chalk to be left out. Introducing fossil zones is complicating but ultimately adds to the accuracy of identifying strata. Fossils are, after all, time indicators. Work in the identifying of fossil zones began in France in the second half of the 19th Century. The resulting, agreed, bio-divisions are set out in the table below. The names of the divisions are a Latinised version of the area name where the representative strata were studied. The first division was studied in the area of LeMans—the Roman name of which was Cenomanum. So, Cenomanian was the name applied to the division.

Chalk Biodivisions

	Biodivision	French location	Basal marker bed
	Maastrictian	Maastricht	- Base of Sidestrand Chalk
	Campanian	La Grand Champagne	- Friars Bay Marl (Youngest Kent Chalk)
Upper Chalk	Santonian	Saintes, Charente	- rhars bay wan (roungest kent charky
	1		Pegwell Inoceramid Band
	Coniacian	Cognac, Charente	
	-		South Foreland Hardground 1 Bantam Hole Flints
Middle Chalk	Turonian	Touraine, Cher Valley	
			Base of Inoceramus labiatus zone
			Base of Melbourne Rock
Lower Chalk	Cenomanian	Cenomanum (Le Mans)	
			Base of Glauconitic Marl

To apply these divisions into the litho-stratigraphic schemes does introduce some difficulties in certain stages. I do not agree with reaction that we should dismiss the palaeontological. I emphasise again that fossils are time indicators and that these exercises are good, applied palaeontology.

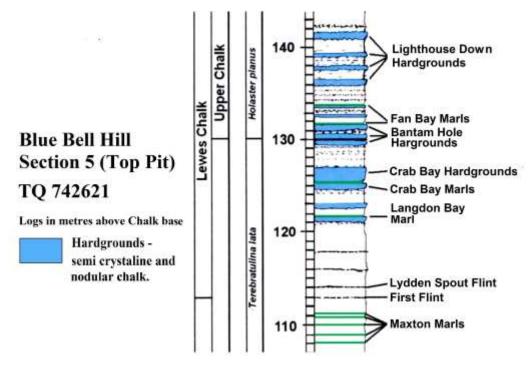

I propose that we look at some of the boundaries and see what problems are encountered.

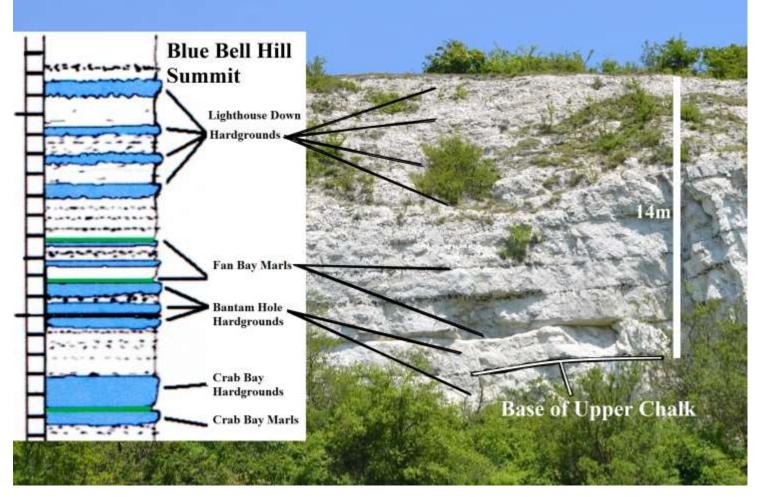

Comparison of zonal schemes within the Cenomanian

_	Biodivision	Mortimore et al	Robinson	Fossil zone	Basal marker bed
	1	Holywell	Shakespeare	Inoceramus labiatus	Base of Inoceramus labiatus zor
		Holywell	Shakespeare	Neocardioceras juddi	Base of Melbourne Rock
			Pienus Maris	Metoicoceras geslinianum	Base of Melbourne Rock Base of Plenus Marl Top of jukes-brownei zone Base of jukes-brownei zone
			Capel-le-Ferne	Calycoceras guerangeri	
Lower		Zig Zag Hill	Hay Cliff	Acanthoceras jukes-brownei	
Chalk		Fact Wars Per	Acanthoceras rhotomagense	Top of Tenuis Limestone Top of Glauconitic Marl	
		East Wear Bay	Mantelliceras mantelli		
		West Melbury	Glauconitic Marl	Hypoturillites carcitanensis	Base of Glauconitic Marl

In the **Cenomanian**, most of the zonal boundaries coincide. The boundary of the Zig Zag Hill and West Melbury Chalk is the top of the **Tenuis Limestone**. Visible at Culand and at Folkestone. This also is the boundary of the old *Holaster subglobosus* and *Schloenbachia varians* zones. This is replaced as the junction of the *Acanthoceras rhotomagense* and *Mantelliceras mantelli* zones. I have stated in the table above that the base of Nick Robinson's Capel-le-Ferne member is the top of the *Acanthoceras jukes-brownei* zone, although in fact he places this at an *Inoceramus*-rich layer about a metre higher.

The base of the Melbourne Rock is the base of the Middle Chalk, the Holywell Nodular Chalk, and the base of the Shakespeare Cliff Member, but not the Cenomanian-Turonian boundary. The boundary has been subject to much dispute. The best scheme seems to be the zonal range of the ammonites *Mammites nodosoides* and *Neocardioceras juddi*. *M nodosoides* occurs across the Turonian type-area at Touraine. In Devon it is found throughout the Melbourne Rock. In Kent and Sussex it first appears about 1-2 metres above the base of the Melbourne Rock. In Devon, the Melbourne Rock is underlain by the Pinnacles Limestone—the youngest division of the Cenomanian Limestone. The Pinnacles Limestone contains the small ammonite, Neocardioceras juddi. This ammonite occurs in the lowest metre of the Melbourne Rock in Kent and Sussex. Thus, from Rawson *et al*, (Geological Society) it is concluded the boundary of the Cenomanian occurs about a metre above the *Plenus* Marls. Below is the section seen at Peters Pit, Wouldham, in 2013. So, the two lowest rocky layers of the Melbourne Rock/ Holywell Chalk are included in the *Neocardioceras juddi* zone of the Cenomanian. I do not know the current status of this section.



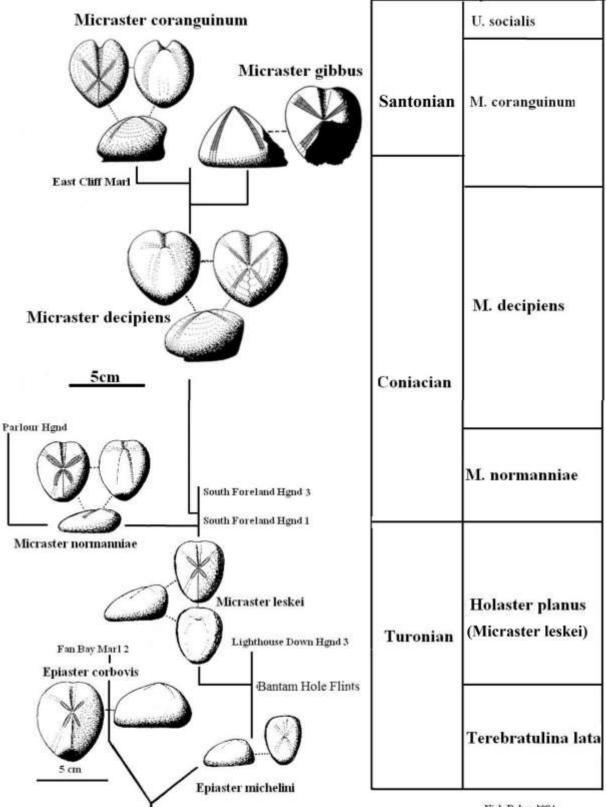

Comparison of zonal schemes within the Turonian

Biodivision	Mortimore et al	Robinson	Fossil zone	Basal marker bed
	-	St. Margarets	Former and the second	South Foreland Hardground 1
	Lewes		Holaster Planus	Bantam Hole Flints
Construction of the second	÷			Crab Bay Marl First Flints Warren Marl 1 Round Down Marl Base of <i>Inoceramus labiatus</i> zone
Turonian		Akers Steps		
	New Pit	Aycliff		
	Holywell	Shakespeare	Inoceramus labiatus	
		Turonian New Pit	Turonian Lewes St. Margarets Akers Steps New Pit Aycliff	Lewes St. Margarets Holaster Planus Turonian Akers Steps Terebratulina lata

The sections within the Turonian have well-identified marker-beds.

The Holywell and Lewes Chalks are named respectively as the Holywell Nodular and Lewes Nodular Chalk. The New Pit Chalk is free of hardgrounds and flint bands. Within the Turonian is the boundary of the 'classical' Middle and Upper Chalk. It is exposed in many of the chalk pits in the Medway Valley, but is often inaccessible. We will have a look here at Blue Bell Hill. The topmost pit begins in the Holywell Nodular/ Melbourne Rock. After the New Pit interlude, the Lewes Nodular Chalk begins about 17 metres below the Bantam Hole Flints, which mark the base of the Upper Chalk. Next, you will see a photo of the topmost beds at Blue Bell Hill.

Although the Bantam Hole Flints mark the junction of *the Holaster planus* and *Terebratulina lata* zones, both of these fossils occur above and below the junction. The beds were named in full knowledge of this. The Bantam Hole Flints were chosen as the boundary with their known juxta-position with the marl seams and hardgrounds above it. Bantam Hole, Fan Bay and Lighthouse Down are located just south of St Margaret-at-Cliffe. If you want to visit the cliff section there, please note that **at high tide up to 3m of water covers the beach at the highest point—plan carefully**!


Boxley Hill

TQ 7745 5985 - 7745 5980

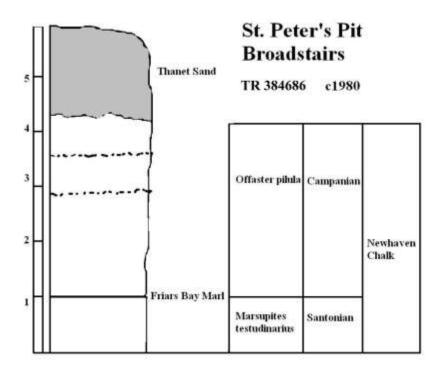
	Rawson et al	Stokes	
Coniacian	M. cortes- tudinarium	Micraster decipiens	Corn Hill Hardgrounds
			Edinborough Hill Inoceramus Band Bay Hill Hardground Strood Flint Pines Garden Hardground
		Micraster normanniae	Parlour Hardground Ness Point Marls South Foreland Hardgrounds
Upper	Holaster	Helester eleme	Cobbler Mart
Turonian	planus	Holaster planus	Lighthouse Down Hardgrounds

On the next page you will see a schematic diagram of the evolution of Micraster echinoids. At the top of the Holaster planus zone the early species of *Micraster*— *Micraster leskei*, then branched into two species: the main line into Micraster *decipiens*, and a flat form—*Micraster* normanniae. Dr R. Stokes felt that this should be considered as a new zone of *M normanniae*, which is recognised in France. He considered the *M. normanniae* zone to be part of the Turonian. Rawson et al of the Geological Society felt that this was insufficient to consider a whole new zone and retained the top of the Turonian at South Foreland Hardground 1. The author recognises the normanniae zone but considers it as part of the Coniacian. *M. normanniae* is not found above the Parlour Hardground-see diagram left.

Micraster evolution

Nick Baker 1984

Comparison of zonal schemes within the Coniacian


	Biodivision	Mortimore et al	Robinson	Fossil zone	Basal marker bed
Upper Chalk	Coniacian	Seaford	Broadstairs	Micraster coranguinum	Pegwell Inoceramid Band East Cliff Marl 2 Parlour Hardground South Foreland Hardground 1 Bantam Hole Flints
		Lewes	St. Margarets	Micraster decipiens	
				Micraster normanniae	
				Holaster Planus	

The beds comprising the Coniacian are best seen at the base of the cliffs around St Margaret's Bay. The top of the Coniacian is the Pegwell Inoceramid Band about 4km north of St Margarets. Beds marking the division of the St Margarets– Broadstairs Chalk are East Cliff Marl 2—at beach level about 2km north of St Margarets.

Comparison of zonal schemes within the Santonian

	Biodivision	Mortimore et al	Robinson	Fossil zone	Basal marker bed
Upper Chalk		Newhaven		Offaster pilula	Friars Bay Marl (Youngest Kent Chalk) Palm Bay Echinoid Band Peake's Sponge Bed Barrois' Sponge Bed Pegwell Inoceramid Band East Cliff Marl 2
	Santonian		Margate	Marsupites testudinarius	
				Uintacrinus socialis	
		Seaford		Micraster coranguinum	
			Broadstairs		

The divisions within the Santonian are decided in all cases by the fossil content. The Santonian begins with the Pegwell Inoceramid band and ends with the Friars Bay Marl. For some years there has been competition between *Micraster* and *Inoceramus* in deciding the zones at this level of the chalk. The author has a lot of *Micraster* examples but very few *Inoceramus*. So the Pegwell Inoceramid Band seems to be the nearest we can get to the base of the Santonian equivalent to the (French) type area. The division ends with the Friars Bay Marl. The location used to be St Peters Pit TR384686 (Shephard-Thorn, 1988), near Broadstairs, but that may now be in-filled. This is the youngest chalk in Kent. Dr Robinson does not appear to mention the location in his memoir (Robinson 1986), but the zone is mentioned by Shephard-Thorn—see above

Thus ends my account. My knowledge of the Campanian and Maastricht Chalk is not ready for broadcast– I did not get out of Kent often enough

See next page for references

References

Mortimore. et al	1997 Lithostratigraphy for mapping the Chalk of southern England. Proc. Geol. Ass, 109.
	Bristow R, Mortimore R, Wood, C.
Mortimore. R.	1986 Statigraphy of the Upper Cretaceous White Chalk of Sussex. Proc. Geol Ass 97
Rawson et al	1978 A correlation of the Cretaceous rocks in the British Isles. Geol Soc. Lond. Rawson F. R.,
	Curry D., Dilley, F., Hancock, J. Kennedy W, Neal J, Wood C, Worssam B.
Robinson. N.	1986 Lithostratigraphy of the Chalk Group of the North Downs, southeast England.
	Proc. Geol Ass 97
Shephard-Thorn	, E. R., 1988. Geology of the country around Ramsgate and Dover. British Geol Survey.HMSO
Stokes, R. B.	1977 The Echinoids Micraster and Epiaster, from the Turonian and Senonian of (southern)
	England. Palaeontology Vol 20, Pt 4.
	(note Senonian = Coniacian to Campanian)

End Notes

At the moment there is a file circulating regarding subject matter for September onwards. I cannot say how likely these will be for physical meetings. Certainly they can be zoom talks. Speaking personally, in spite of optimism on the part of business and Government, (with an apparent ignorance of how society actually works) the element of risk, even after double vaccination, is still too close to certainty. And I know that is the case for others. It would be difficult to act as treasurer while being absent, in the light of the level of management I had before. I have just submitted our insurance for this July onwards. I'm assuming we have the membership we had in March 2020. It might be possible to run field trip/s, with least risk. I am already set to help with an OUGS trip in early September. Regarding subs, - that will depend on what we do. Much of out commitment is the rent of the hall—so it's a case of how folks feel—so I will need some feedback in the coming weeks.

Nick Baker

Treasurer and newsletter compiler/editor July 29th 2021